A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities
نویسندگان
چکیده
Even as the acceptance of the fossil fuel greenhouse effect theory continues to grow amongst academics, statesmen and plebeians alike, the early adopters have already engaged in pre-emptive research activities aimed at mitigating the effects of such greenhouse gases. The focus of one such effort is on the capture and storage of CO2 (carbon dioxide) from anthropogenic fixed source emissions. This effort can be broken down into a few broad categories such as terrestrial, ocean and geologic sequestration. Geologic sequestration refers to all activities geared towards the capture and storage of CO2 under the surface of the earth in diverse ‘reservoirs’ such as deep saline formations, depleted oil and gas wells and unmineable coal seams to name a few. This investigation develops a systems perspective for assessing carbon dioxide capture and storage (CCS) opportunities within the realm of geologic sequestration. While multiple concurrent research activities continue to explore CCS opportunities from various perspectives, efforts at a systems analysis of the overall picture are just beginning. A systems view describing methodologies to integrate a variety of CCS data to assess potential sequestration opportunities is at the heart of this study. It is based on research being conducted at the Massachusetts Institute of Technology (MIT) under sponsorship of the United States Department of Energy (DOE). Using a Geographic Information System (GIS) and publicly available data, a detailed characterization of CO2 sources and reservoirs are being developed. A source-reservoir matching process will be implemented which begins with quantifying the ‘capturability’ of a CO2 source, a function of the purity, volume and several site specific considerations. Next, the potential proximate reservoirs are identified and then ranked based on transport options, type, capacity, cost, regulatory considerations
منابع مشابه
A Systems Perspective for Assessing Carbon Dioxide
Even as the acceptance of the fossil fuel greenhouse effect theory continues to grow amongst academics, statesmen and plebeians alike, the early adopters have already engaged in pre-emptive research activities aimed at mitigating the effects of such greenhouse gases. The focus of one such effort is on the capture and storage of CO2 (carbon dioxide) from anthropogenic fixed source emissions. Thi...
متن کاملCarbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores
CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...
متن کاملStepwise Synthesis of Mesoporous Carbon Nitride Functionalized by Melamine Based Dendrimer Amines for Adsorption of CO2 and CH4
In this study, a novel solid dendrimer amine (hyperbranched polymers) was prepared using mesoporous carbon nitride functionalized by melamine based dendrimer amines. This adsorbent was denoted MDA-MCN-1. The process was stepwise synthesis and hard-templating method using mesoporous silica SBA-15 as a template. Cyanuric chloride and N,N-diisopropylethylamine (DIPEA, Merck) were used for function...
متن کاملCarbon Dioxide Capture by Modified UVM-7 Adsorbent
In this study, bimodal meso-porous silica (UVM-7) synthesized and fabricated amino silane modified supports were characterized by powder X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscope (TEM), elemental analysis and titration. Capacity of CO2 capture on modified bimodal pore structure silica at 70°C was calculated using breakthrough curves; and it was found th...
متن کاملInvestigation of carbon dioxide capture from hydrogen using the thermal pressure swing adsorption process: Central composite design modeling
In this study pre-combustion capture of carbon dioxide from hydrogen was performed using a 5A zeolite adsorber. A one column thermal pressure swing adsorption (TPSA) process was studied in the bulk separation of a CO2/H2 mixture (50:50 vol%). The adsorption dynamics of the zeolite bed were investigated by breakthrough experiments to select the suitable range for operational factors in the desig...
متن کامل